Ultimate List of Tips, Tricks, and Tutorials for Fab Lab Students

This post is a not on a lot of techniques for using different types of machines and processes for making stuff. I’ve had this for years but decided to finally publish it. I’ll add to it periodically, but I figured others might find it useful as well. RIGHT-CLICK to open in new windows.

Laser Cutting:

Embedded Systems, Microcontrollers, and Arduino

Circuit Board design and Fabrication:

3D Printing:

Casting and Mould Making:

CNC:

Machines:

Mechanical:

Metal-Bending:

Miscellaneous:

 

 

================================================

My favorite Fabrication-related researchers:

Dr. Stephanie Meuller at MIT’s research group

Dr. Patrick Baudisch at Hasso Plattner Institute Human computer interaction reserach group

 

Teaching Research:

Sketchnoting basics

Graphic Recording

Sketchnote travel journal to get started

Control Theory:

Brian Douglas’s awesome youtube channel explains Control with some great examples.

Kat Kim has another great channel on Controls as well as other Electrical and Computer engineering examples and lectures

George Gillard has a great whitepaper explaining PID controls

Another great PID example is from this Reddit thread

Learning Math concepts:

MathVault – Learn higher-level (college-level) math concepts more intuitively

BetterExplained.com ADEPT model for learning math intuitively

Good sources of materials:

XXXXXXXXXXX    Todo when I’m not so busy or lazy: XXXXXXXXXXXXX

Add sections for PCL shapelock and other named plastics to ultimate FabLab list.

Also add cardboard modeling guy and nibbler tool

Add anodizing alum and titanium, bluing/blacking steel,

And interesting research I like with lasers  hydrographics and uv printers and metal hologram art

Basic setup for all Raspberrypi projects

This is a starting point that I do on every one of my raspberry pi projects. You can branch off from this point to any number of projects. I used to like a screen and keyboard/mouse interface, but this is how to set up a headless rpi that you only control over the network. it is much easier than it sounds.

Hardware:

  • Raaspberrypi startup kit with power cable and SD card.
  • Computer (I have windows 10 but there are guides out there for mac and linux as well)
  • Wireless network to connect to
  • Maybe a camera to format the SD card?

Software Tools required :

  • SD card formatter (I use a DLSR camera because sometimes even this tool won’t format the cards right)
  • Balena etcher to burn the raspberryPiOS to the SD card

Firstly, I downloaded and installed the latest raspberrypiOS Lite to an SD card. Once it was installed, I reinserted the SD card into my laptop and created a wpa_supplicant.conf file in the partition I was able to open in windows (one will be openable, the other won’t be). This file sets up your Wifi settings so you can control the pi remotely instead of trying to find the right HDMI or component cable an display and connecting a keyboard and mouse to it.  I can simply ssh into the Rpi and run the scripts I need. This may sound intimidating, but it isn’t too hard at all.

Open a text editor (NOT word or notepad, download something like Sublime3 or notepad++) and create a new file names wpa_supplicant.conf. Paste the following and make sure to enter your WIFI’s credentials and keep the quotation marks.

country=US
update_config=1
ctrl_interface=/var/run/wpa_supplicant

network={
scan_ssid=1
ssid="Put your networks SSID here"
psk="Put your networks password here"
}

That will get the pi on the network, next we need to be able to actually control the Rpi from another computer on the network. To do so, just create a blank file with no file extension named “ssh” in the same SD card partition as wpa_supplicant.conf.  That’s it. This empty file just tells the Rpi to turn on ssh, which allows you to connect and control it remotely.

Now you can insert SD card into Rpi and plug in power to boot up.

With my older Rpi3 I give it like 5 minutes depending on the OS. Then you can check to see if your Rpi is on the network.  Open the command window in windows (windows key, then type “cmd” then enter) and type

ping raspberrypi.local

You should see a response. If it times out, then give it a little more time to install the OS and try again. If you can’t ping it (communicate with it ) after 15 minutes after you booted t up (or 30min or longer sometimes for a pi Zero w) need to start from scratch because something went wrong in your wpa_supplicant file. Triple check that the file is not saved as “wpa-supplicant.conf” or “wpa_supplicant.conf.txt” For that last one you may need to “show file extensions” in window’s explorer.

I always used putty to ssh into linux machines from windows, but Windows 10 apparently has ssh built right in, so you can just click the windows icon and type “powershell” to open a command window, then enter

 ssh pi@raspberrypi.local

We’ll use powershell instead of the Cmd window to allow us to copy and paste stuff into the window easily.

The first time you do this, it’ll give you a warning that it “can’t verify the [raspberrypi], do you want to continue”  just type “yes” and hit enter. Then you will be asked for the password. Note that as you type, you will see no letters appear in the terminal. This is normal for password entry on linux machines. The default username is “pi” and default password is “raspberry”.  When you type it and hit enter you should see a green line that says “pi@raspberry” which means you are logged into the pi.

The first order of business is to change the default password. type the following:

passwd

Enter your new password and you’re set. Now you can go off doing whatever random things you want to use the Rpi for.

To copy and paste into the SSH window you may need copy as usual form a webpage then right-click into the powershell window (maybe do this twice if you hadn’t already selected the powershell window) and it’ll automatically paste it for you.

Static IP: Next I like to set up a static IP address for my Pi so I always know where it is. This also helps things like streaming a webcam for Octoprint since the address won’t change. Android phones won’t use the mDNS entry of “raspbeypi.local” so if you want to use your phone to control or view things on the pi you need to set a static ip. Do so by issuing the following command:

sudo nano /etc/dhcpcd.conf  #this opens nano command line text editor to the IP address file...

My pi is on wifi  so I’ll adjust the wlan0, but you can replace this with “eth0” if your pi is using ethernet.

interface wlan0
static ip_address=192.168.0.100/24    
static routers=192.168.0.254
static domain_name_servers=192.168.0.254 8.8.8.8

This way I know all my raspberrypi stuff is found at 192.168.0.100. I can just type that in for ssh, or into a browser if I’m running a server on it (like octoprint, hassio, mjpg streaming video, etc.

Remote Desktop: To make it easier to connect to the pi in the future and to remote into it and control it’s graphical desktop from any other computer (such as your desktop or laptop), you can set up your pi to allow VNC. First, in your ssh terminal, we need to enable VNC.

sudo raspi-config

Then use arrow keys to select “Interface Options”.  Select “VNC” and you’ll be prompted to enable VNC the server. Then you can exit Raspi-config. On your desktop/laptop/other computer you need to install a VNC viewer which will allow you to connect. Visit https://www.realvnc.com/en/connect/download/viewer/ and install it. You should then be able to connect via the IP address of the pi, login to it and have full access and control as if you controlling it with your keyboard, mouse and monitor.

 

Remote shutdown:

Next you need to know how to shutdown and restart your rpi safely. It is a computer after all and I can’t tell if  just unplugging power will corrupt the SD card, so a safe method of shutdown is required. I use a couple. There’s a script you can add to allow shutdown by connection one of the GPIO pins to ground. This is essentially what you do on a regular computer’s power button. You tell the computer you’d like it to shutdown so it will trigger the shutdown functions. Secondly, you might want the ability to shut down or restart via ssh.

sudo shutdown -h now

or

sudo poweroff

and a restart is

sudo reboot

I’ve added a plugin and scripts to my octoprint setup to do the GPIO and I can shutdown from the web interface.

 

Now if at any point you mess up and can no longer communicate with the pi (setting the wrong IP address, etc) simply format the SD card in windows or in a digital camera and try again.

I recommend once you get all your settings correct, you backup your Rpi OS periodically. There’s a script that you can use to copy a bootable filesystem to another (can even be smaller) SD card you plug into a USB card reader on the pi.

Turn an old Computer into a Local Fileserver (Mostly Graphical Setup)

We’re running out of space. With photos, astrophotography files, and music recordings and work and just life stuff; we are running low on hard drive space. Over the years we’ve bought a few external USB hard drives but even those aren’t manages well and being portable get moved around a lot. That’s not the safest way to handle hard drives. Unless they are SSDs, they can be damaged by moving them around and such. We needed a better solution. I prefer using GUIs to set things up but will for through the terminal if I have to… I just haven’t used my unix fileserver skills since I worked in IT and my linux is a bit rusty as well.

Googling around you’ll find a ton about setting up a NAS or RAID5 or somesuch, but that’s overkill. I’m not looking to spend any money with this, otherwise I’d just have bought yet another portable drive. I already have a bunch of hard drives full of stuff (and honestly, there are a LOT of duplicates of each file taking up tons of space from the crappy way I store my backups). I want to use those drives and be able to clean out the duplicates to gain space. The first step is to build a basic file server.

I had a linux machine (my workhorse during grad school) that wasn’t being used, and  bunch of old hard drives that I wanted to use/access  It was a variety of drives from old PCs (back to win XP actually, and even older). I had a few external drives that broke so I just plopped them into this machine as well. I didn’t want to format them for a RAID or anything as they were all different sizes and I had data like pics and projects and work stuff from ages ago on them I wanted to keep. The best solution for me was the JBOD (just a bunch of drives) style server. All the NAS examples looked annoying to setup and I’d easily forget what I had done to set them up so JBOD it was.  I couldn’t find any single document explaining how to do all the steps I wanted so I spent a couple of weeks failing in my spare time… breaking and unbreaking my linux fileserver and documenting the working parts here for when I need to work on it again. I prefer doing things with GUI if possible, but I’ll do some things using the terminal because you just have to but I tried to keep it to a minimum.

Installing Linux:

If you don’t already have linux running on this computer, I suggest you install it. It sounds hard, but it is super easy to do actually. Just download any flavor of ubuntu you like (lubuntu, kubuntu, linux mint, cinnamon, etc.) I recommend the versions that say “LTS” as those are supported for 2 years or so. There’s a lot of options here.

Install linux without formatting hard drive or losing data:

  1. Download Wubi. This will let you install linux without killing your windows files or messing anything up. you can always uninstall linux later if you want using this method.

Start clean on either blank hard drive or format an old drive:

  1. Download ubuntu flavor you prefer
  2. Format a USB flash drive that’s at least 2GB (lubutnu and xubtunu) or 4GB (all other flavors).
  3. Use Balena Etcher to burn this ISO file to the USB drive.
  4. Once finished, you can reboot your computer.
  5. Enter the boot menu when you see your computer’s startup logo (before windows logo) by pressing either F10, F11, F12, or the delete key. Different manufacturers have different keys they choose for this.
  6. Select to boot off the USB drive.
  7. Doubleclick the icon on the desktop to install *buntu. Follow the menus or youtube videos on how to install it.
  8. Remove the USB drive and reboot when done.

I was already running ubuntu so I just needed to put all the drives in the computer case. I could have 2 drives that were IDE on the same ribbon cable, and 4 SATA drives on the motherboard of my old linux box. Sadly, that’s all this mobo could accommodate. I see spots for 4 more SATA drive on the PCB but they aren’t populated. I filled all 6 spots with drives, making sure that all the drives were set up as slaves except the bootable one (see another post about how I set that up).  I also had a TON of USB ports on this motherboard as well (literally 6 on the back, 2 on the front and I added 2 more to a breakout cable inside for a total of 10 USB ports). These can add more portable drives and other drives with some of  these awesome USB to IDE/SATA drive cables I have to the server. As I loaded these drives in the bays I made a note as to their serial numbers and capacities. I wrote it on paper, but I also used a sharpie and wrote it on the chassis so I could keep track of what is what and where.

When I turned the machine on, I went into the BIOS and set up the boot order for the hard drives so that my /filesystem always boots first in order of hard drives.  When booting the linux machine, hold the Delete key to enter BIOS. Then go to Advanced BIOS Features.

bios1

Next select “Hard Disk Priority”. Here’s what that looks like:

bios2

Finally, use the arrow keys to select a particular hard drive (the one you want to boot from) and then use the + key to increase its priority until it is number 1:

bios3

Once this is done, Hit F10 to save and exit BIOS. It will reboot the machine into linux as it usually did.

Accessing all the Hard Drives:
Open your ubuntu menu and search for the “disks”  program. This should be part of gnome-system-tools, which is a standard program in ubuntu. If you don’t have it then open your package manager and search for it. Mark it for installation and click the “Apply” button. or open a terminal and enter the following:

sudo apt-get install gnome-system-tools

You can copy that line of text paste it into the terminal using ctrl+shift+v to paste in a terminal.

All your hard drives should be visible in the Disks app. It lays out all the gory details. Serial numbers, model numbers, etc. Click each drive in the left and note what the “mount point” is for them. I have my Filesystem (this is where I installed the linux operating system)  and /home mount points on separate drives. /home is like the user folder in Windows with a folders for Desktop folder, Documents folder, etc. Separating this from the operating system installation file tree allows me to reinstall linux without breaking my user’s documents and settings and Desktop items, etc. I have another post on that and it has served me very well over the years.

For my other drives, they have mount points that start with /mnt  and end in a weird code.  That code is the UUID (hardware ID) for that hard drive and it isn’t very descriptive for humans.  Let’s change that to something helpful. For instance I changed my 1TB drive’s mount point to /mnt/_old_1TB_MyBook

image

Once all the drives have normal names click the link to one of them and it’ll take you to the folder in your file browser. Go up one directory to see all the hard drives. You’ll note the old folders with the UUIDs in there as well as any old names you had mounted in the past, but they are empty. Only the mount points you named in Disks are connected to your hard drives. You can just delete the other empty old mount points. You have to be root to do so. I used the terminal and the command sudo rmdir <folder name> to delete the ones I was CERTAIN were empty old mount points.

All we’ve done here is essentially modify the /etc/fstab file which contains drive mount info. Lots of other tutorials out there can show you how to do this in the terminal if you want to know how.

Now we need to install all the other software we’ll need for the other steps of setting up the server. in your start menu, search for your package manager software. Mine is “Synaptic package manager” and install the following (make sure you check the box next to these entries, select “Mark for Installation” and when all are selected, click the “Apply” button.) Don’t be surprised if some of these are already selected, just ignore them then:

gnome-system-tools

samba

samba-common

python-glade2

system-config-samba

Or you could open a terminal and paste the following which will install them all for you automatically

sudo apt-get install gnome-system-tools samba samba-common python-glade2  system-config-samba

Once these all install you will create your linux users who can access this machine. You need linux users to be able to create Samba users. Samba is the file server software. From your start menu button, search for the app “Users and Groups.” Add whoever needs users for the fileserver.

linuxUsers

Now you can start fiddling with Samba, which is the actual fileserver software. Since there’s no icon to select to load this app, you need to open a terminal (hit ctrl+alt+t) type or paste:

sudo -H system-config-samba

You can copy that line of text paste it into the terminal using ctrl+shift+v to paste in a terminal.

You have to enter your password, but then a window should pop up. The very first time I did this I got the following error:

SystemError: could not open configuration file `/etc/libuser.conf': No such file or directory

ok, so the file doesn’t exist… I’ll simply make a blank file there and try again.

sudo touch /etc/libuser.conf #creates a blank file named libuser.conf in /etc folder
sudo -H system-config-samba

Success! It opened!

samba server config

Now we need to figure out which folders we want to share and how they are set up in linux.

As we saw before, the internal hard drives all have mount points in the /mnt folder. So let’s create a share for that. Click the big plus sign button and make yours match mine below. Be sure to click the “Access” tab and make it open for everyone.

image

Do the same kind of thing for the /media folder. This is where any USB storage devices will mount to by default.

And finally, I have a TON of files on my old desktop and user folder, so I want to make the entire /home folder accessible as well. You have to be careful with this though because if you allow all users (and even guests) edit access to your home folder, they can delete stuff, and snoop to their hearts’ content. Any sensitive data should be locked so that users are required to log in and can only access their files. If for example you wanted each linux user we created earlier to access only their home folders, you’d set that up as /home/adam then you could set the access rights to only allow user “adam” to view it.

Once you’ve set this up, now you must create the Samba users. While in the same application, select Preferences –> Samba users. Here you will add a new user with the same name as each linux user. You will select each user from the “Unix user” dropdown box (this is why we had to create all the users before). You can have the same or different passwords than your linux login. Once you added everyone, close this app. The steps we just took replace the manual process of editing a configuration file for Samba. This is a plain text file stores in /etc/samba called smb.conf and this is usually what most tutorials will do, show you how to edit this file manually. I didn’t have luck with that. Also, you might see tutorials using a tool called gadmin-samba however when I used that it completely hosed up my system hardcore. I had to purge all samba stuff, delete all the files and start from scratch several times to fix the issues.

File/Folder Access Rights:

The final step here that is required is to set the access rights of each folder you want to share. This is important because unless we change these permissions, we will end up only being able to VIEW files and folders on the server but we can’t create new files, paste, move, or delete anything yet. To fix this we need to change the permissions on the folders we set up to share.

We need to open the folders as root or administrator. Depending on the file manager software you might have different ways to do this, but in mine you simple right click ANY folder and choose “open as Administrator” or “Open as root” then I can simply navigate to the filepath “/” If yours doesn’t offer this, then open a terminal and type in the name of your file manager but call it from sudo like one of the following lines:

sudo nautilus /
#or
sudo nemo /
#or
sudo caja /

Right click on the folder of interest, for example “/mnt” and view the Properties. Click the Permissions” tab and make sure that they all show the ability to “Create and delete files.”

But if you’re using the terminal anyway, you can simply use the chmod commands. Here’s the best explanation of how to use it I’ve ever seen. You can make /mnt and /media fully writable like this:

sudo chmod 777 –R /mnt
sudo chmod 777 –R /media

Or you can give others the ability to look at files in your home user folder, but not create or delete like this:

sudo chmod 755 –R /home/adam

And you can block others from your folders and have them only viewable and editable by you like so:

sudo chmod 700 –R /home/adam

On the Windows machine:

Now your fileserver is set up you need to access it. Go on your windows machine and open a file browser window. Right-click on “This PC” and select “Add a Network Location”  Click Next until it asks for the location. Click “Browse” and wait a minute for it to search your network. You should see your fileServer’s name pop up in the list. Click literally any folder under the fileServer and select Next.

fileserver List

Shorten the terribly long name it gives you (I just delete the highlighted part) and you’re done.

name1

It’ll pull in the other accessible folders on that drive as well. Now you should be able to access and edit anything on those folders on the fileserver. To get to this again simply choose the fileserver option in the left-pane of the windows file explorer. If this doesn’t appear, then make sure your server is turned on and is on the same network as your windows machine and repeat the instruction in this section of the post.

remote

The first time you visit something in here it might ask you for a username and password. Just enter one of the Samba username and password combos we created earlier. You can make it save these credentials and never ask you again if you’d like.

Cherry on top – Remote Shutdown of server:

If you don’t want to connect a keyboard, mouse and monitor to the screen just to shutdown the fileserver, you can do so remotely by installing and using SSH. SSH is a way to securely tunnel into the fileserver’s terminal remotely. That way you can send it the standard linux shutdown message from your windows PC when you are done with it for the day.

Open synaptic and you should select the following:

or run the following command:

sudo systemctl status ssh

This will install the needed files for SSH. Next, we need to let the firewall built into linux know you want to allow ssh. In a terminal window run the following:

sudo ufw allow ssh

Now you can go to the windows computer and use putty.

Putty1

Enter your data here (keep the port as 22) and when you click “open” a black command window will pop up asking you who you want to login as. Type your linux username and hit enter and it’ll ask for a password. Now you’re commanding the terminal of the linux machine from windows. You can do literally anything the terminal can handle. You can’t do anything that requires GUIs though this way. That’s fine though because this is enough to send the reboot or shutdown signal. The shutdown takes about a minute before it actually shuts down, so don’ t think it isn’t doing anything, just give it some time.

sudo shutdown
#or
sudo reboot

Remote Desktop:

If you want a graphical environment for controlling your server, there’s 2 options. One is to simply remote Desktop into it.  There are many ways to do this, but the easiest is to simply install and enable the xrdp app on the linux machine and use the built-in RDP app in windows to connect.

Open synaptic package manager and search for xrdp and xorgxrdp.  Mark it for installation and click Apply.

Once this is done, go to the in the App search, look for “System Settings

Go to Sharing and make sure Remote Login is ON.

image

Next, in system settings, click “Network” in the left column and then click the gear button next to your wired (or wireless) connection. This will give you your IP address. It should look similar to your router’s address. Mine’s 192.168.x.x. You’ll need this to connect in windows.

To do all this in the terminal on the linux machine (or through SSH) run the following:

sudo apt install xrdp
sudo systemctl enable xrdp
ifconfig

This last command, ifconfig, will give you a screen showing you the local IP address of the machine. It should match closely to your router’s address. Mine is 192.168.x.x so I look for something that matches that. You’ll use this on the windows machine.

Now on the windows machine, click the start button and type “RDP” and hit enter. Type in the IP address of the linux machine.

I found an easier way. Simply right click on the fileserver in your explorer folder and select “Remote into this machine”

image

When you click connect, you’ll be able to login. I had a little trouble with this connecting. I tried all the selections in the dropdown menu a couple of times and on the 2nd or 3rd try it worked. Once I was logged in I got an error asking me to login to create a color device over and over. After entering my password 3 times I just canceled it and the window stopped popping up. I haven’t done this in like 15 years, but I don’t remember the experience being so crappy. I can access the desktop, but it is displaying a GNOME environment instead of the Mate environment I have installed on the linux machine. Nonetheless I can get do things graphically without issue.

Other Thoughts:

The way I’ve done it is quite insecure. I’m allowing Guests on the network access to create and destroy all the shared files which is kind of dumb… I’ll live with it though because I will only turn this fileserver on if I am immediately accessing the files on it, then immediately turning it off again.  In that short time I hope I don’t get hacked…

Storing all your files in one location is not the best for preservation. You can make a personal cloud like Google Drive, Dropbox, Box, OneDrive, Apple Cloud, etc. by using the Unison program.  It essentially synchronized two folders. These can be on the same computer, one on a portable USB drive, or even across the network. Anything added, modified, or deleted in one folder is automatically synched to the other in both directions.

Windows Networks Issues:

If the network disappeared from the “Networks” thing in Windows 10 but still somehow appears in the sidebar and is still accessible, no prob. Follow these instructions: https://www.wintips.org/fix-windows-10-network-computers-not-showing/#method-5

File Manager Share plugins:

Previously, I had some luck with using my file-brower’s “share” plugin. Nautilus, Nemo, and Caja all have their respective “share” app you can install in apt-get or synaptic eg “caja-share“.  This will allow you to simply right-click on a folder and select “share settings” where you can set this up yourself. The problem with this is that this info is NOT stored in the basic /etc/samba/smb.conf configuration file. In fact, it is nowhere to be found anywhere in that folder.  This is because this plugin stores this info in the following path:

  /var/lib/samba/usershares

To create the Samba users and set up their SAMBA passwords (these can and maybe *should* be different than their linux user passwords)

sudo smbpasswd –a user1
sudo smbpasswd –a user2

Now enable the users

sudo smbpasswd –e user1
sudo smbpasswd –e user2

Check the status of the samba server. You should see “active” somewhere. If not, you hosed it somehow. Tips on how to fix this at the end…

sudo systemctl status smbd

Restarting samba (after every big change to users, folders, etc you should do this. Or you can reboot the machine, which is foolproof method of restarting the server the right way)

sudo systemctl restart smbd
sudo systemctl restart nmbd

or do it directly for smbd and nbmd

sudo smbd stop
sudo nmbd stop
sudo smbd start
sudo nmbd start

Best OS to Make an Old Chromebook Useful Again

I have this old HP Chromebook 14 which has only 2GB of RAM.  It’s so old that google stopped supporting it (which is ridiculous as it just makes people either A. use an insecure device or B. throw it away.  It is incredibly irresponsible and wasteful for google to create “disposable” computers like this…  Anyway I had to get some further use out of this thing to feel better about the situation.

After first attempting to use Crouton to turn an old and no longer supported chromebook into a dedicated octoprint server and laser cutter machine, I gave up and decided to go a different route. Crouton allows you to run linux AND chromeOS which is a safer option and easily reversible if something goes wrong. The issue is that my chromebook was so old that google no longer supported it anymore.  Due to the limitations of not being able to access the camera for octoprint, and Beam Studio (for my FLUX Beamo laser cutter) didn’t want to connect to my laser I moved on. I’ll instead wipe the machine and give it to someone who can use it.

After trying different versions of smaller linux distros like xubuntu, Lubuntu and even minimumOS of ubuntu (only 64MB!) I had issues installing all of them. All the *buntu flavors were too big for my 2GB RAM so it didn’t even boot up.  The minimumOS was going to be a lot of work if it worked to setup and install everything I’d want if it worked, but I had issues using a bad iso burning software that caused issues with this one. Luckily I kept looking and found the absolute best chromeOS replacement available.

I completely wiped ChromeOS and installed GalliumOS on the HP14 Chromebook (white chromebook) using this step-by-step guide. I have to say that it is by far the best solution and I wish I had done so much earlier. First download and burn the ISO to a USB drive. The only change I’d recommend is to use Balena etcher to burn the ISO to the USB flash drive.

Now, every time you boot up, it gives you an OS verification error (Yellow icon). At this point you must hit “Ctrl+1”  within 5 seconds otherwise it’ll give you a red icon error  and you’ll just need to restart again.

Default Launcher bar:

While I typically don’t mind this bar, the person I was giving this to would prefer it to be gone. It doesn’t stack multiple windows into one icon like modern OS bars do. Since I can’t remove it, I moved it to the top. It is hard to find the settings for this. You must click the “start” icon (which is called the “whisker” menu) and select the “Settings” icon at the top next to the power button (NOT the settings button in the right menu…). Then you can find the main settings for everything.

Right click this bar and go to properties to edit some stuff too if you want.

I wanted to setup the whiskerbar to autohide and be at the top of the screen (like on a mac). So from the settings app, I chose “Panel” and unlocked the bar. I then dragged it to the top and locked it again. Keep this settings window open as we’ll use it again in a sec…

New Mac-like Launcher Dock:

I installed Plank to build a mac-like dock.

sudo apt-get install plank

To add the trash can to this new dock, you need to ctrl+click the plank bar to access its options then drag the trashcan to the bar.  If you add a “docklet” like the trash can or taskmanager and want to remove them later, simply drag it off the bar onto the desktop and it’ll disappear.

When I first ran this, clicking the trash can opened the audio player for some dumb reason. The fix was so stupid simple I would have never thought to do it… In the regular start menu (now at the top bar) go to settings > Preferred Applications > Utilities.  In file manager “Thunar” is selected but you should select “other” and then type “thunar”.  This does the trick.

Now go back in your settings menu of GalliumOS and select “Sessions and startup” then select the “Applications and startup” tab. You can then add “plank” as the command and it’ll autostart the plank docker bar on startup.

Login screen:

Be default it was using xscreensaver with a terrible interface.

Image via ubuntuBuzz

I installed light-dm instead which has a nicer and themable interface.This leads to a much more modern and sleep looking design.

Icons:

I installed numix icons, then you can set the icons by going to Whisker start menu–>the settings icon next to the log-out  and power icons. Select “Appearance”and select the “icons” task.

 

sudo apt-get install light-dm-gtk-greeter-settings

sudo apt-get remove xscreensaver

sudo apt-get install gnome-screensaver

 

Chrome Keyring constantly pops up error:

Each time I logged in and opened chrome, it’d pop up asking me to login to the keyring. That’s pretty annoying. So I found in multiple places online the suggestion to delete the keyring to reset it. This worked great!

Rm ~/.local/share/keyrings/login.keyring


Restart and it’ll ask you once, then never again.

Here’s an additional set of tips for what to do if you want to add more functionality.

Guiding Telescope with a Webcam Setup

I’ve finally gotten jealous enough for the astrophotography subreddit to get back to work on this project. Jess bought me a Meade LX10 8″ diameter telescope several years ago for my birthday. I’ve used it quite a bit to view planets and try to take deep sky astrophotography pictures. This telescope isn’t one of those fancy ones you can type in whatever cool thing you want to see and it’ll drive itself to point right to it, that’s called a “GO TO”. Rather it has a simple “barn door” tracker motor. Basically, if you align to perfect true north, and set the wedge (the thing that mounts the telescope to the tripod) to your latitude, whatever you point the scope it will stay in view for hours in the eyepiece. If I know where to look, I can attach a camera to the scope and leave the shutter open and get some amazing pictures of nebulae and galaxies.

Being that I’m no good at polar alignment, I decided a few years ago to build an arduino interface that will connect my scope to my computer.  The way this works is that I attach a webcam to the spotter scope (the small telescope that helps you find stuff) which looks at a particular star.  The webcam pipe data into a program that sends signals out to the arduino to move the scope to keep the star in the same part of the webcam’s view.  This way, I don’t have to be perfectly polar aligned, the software will help adjust the position of the scope for me.

I went on the hunt for a webcam that would work well with Windows and linux.  This is because a lot of people are buying Raspberry Pi boards,connecting a webcam to them and attaching the whole setup to the telescope. Right now I’m testing on a windows machine so I need a webcam that’ll play well with both.  I looked up the Linux Universal video Class (UVC) drive list to find a good modern camera. This list shows a good number of webcam models and brands that are known to work natively in recent linux distros.

The camera I landed on is the Logitec HD Webcam C270.  It is a very cheap 720p 3 megapixel webcam. That’s overkill for the telescope, but it’s a good general use webcam and we can use it for video chats and such as well.  This means my solution to attaching the camera to the scope can’t be permanent.

I keep a bunch of 3/4″ PVC pipes and connectors in the garage for prototyping, so I grabbed a 3/4-inch T connector.  This connector can easily accommodate my 1″ outer diameter sighting scope.

webcamTele

The scope doesn’t fit perfectly, so I added some 2mm sticky-backed craft foam for a snug pressfit. (On a side note, I can’t tell you how useful it is having this kind of foam in the toolbox for all sorts of random purposes. I use it all the time)  To accommodate the webcam, I used a hacksaw to cut a portion of the PCV connector off as shown.  Then I wrapped a 3/8″ piece of foam on each of the cut edges of the PVC where it will touch the camera. This will help the camera seat well and stay in place when I attach it to the scope.

3webcamTele  4webcamTele

Finally, I used a smooth “ouchless” hair tie to hold the camera to the PVC tightly and aligned the camera with the hole in the PVC T-joint. Again, believe it or not, these hair ties are pretty useful for random jobs.  In fact, I use a 8-inch smooth headband made of the same material to hold on my cheapo dew shield (more on this in another post.)

5webcamTele  6webcamTele

7webcamTele

 

The final product is easy to use and quite robust. I think it’ll work quite well with my the rest of my setup.  Since I’m still working that all out, I’ll post more as I learn more.8webcamTele